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Abstract 
We discussed the combined effects of radiative heat transfer and a transverse magnetic field on steady rotating 

flow of an electrically conducting optically thin fluid through a porous medium in a parallel plate channel and 

non-uniform temperatures at the walls. The analytical solutions are obtained from coupled nonlinear partial 

differential equations for the problem. The computational results are discussed quantitatively with the aid of the 

dimensionless parameters entering in the solution.  
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I. Introduction 
The study of flow in rotating porous 

media is motivated by its practical applications 

in geophysics and engineering. Among the 

applications of rotating flow in porous media to 

engineering disciplines, one can find the food 

processing industry, chemical process industry, 

centrifugation filtration processes and rotating 

machinery. Also the hydro dynamic rotating 

flow of electrically conducting viscous 

incompressible fluids has gained considerable 

attention because of its numerous 

applications in physics and engineering. In 

geophysics, it is applied to measure and   study 

the positions and velocities with respect to a fixed 

frame of reference on the surface of earth, which 

rotate with respect to an inertial frame in the 

presence of its magnetic field. The subject of 

geophysical dynamics now-a-days has become 

an important branch of fluid dynamics due 

to the increasing interest to study environment. 

In Astrophysics, it is applied to study the stellar 

and solar structure, inter planetary and inter 

stellar matter, solar storms etc. In engineering, it 

finds its application in MHD generators, ion 

propulsion, MHD bearings, the three- 

dimensional free convective channel flow 

MHD pumps, MHD boundary layer control of 

re-entry vehicles etc.  The flow of fluids through 

porous media are encountered in a wide range of 

engineering and industrial applications such as in 

recovery or extraction of crude oil, geothermal 

systems, thermal insulation, heat exchangers, 

storage of nuclear wastes, packed bed catalytic 

reactors, atmospheric and oceanic circulations. 

Comprehensive literature on buoyancy induced 

flows can be found Nield and Bejan (2006). The 

study of flow of electrically conducting fluid, the so-

called magneto hydro dynamics (MHD) has a lot of 

attention due to its diverse applications. In 

astrophysics and geophysics, it is applied to the 

study of stellar and solar structures, interstellar 

matter, and radio propagation through the 

ionosphere. In engineering, it finds its application in 

MHD pumps, MHD bearings, nuclear reactors, 

geothermal energy extraction and in boundary layer 

control in the field of aerodynamics. A survey of 

MHD studies could be found in Crammer and Pai 

(1973); Moreau (1990). For example, Raptis et al. 

(1982) analyzed the problem of hydro magnetic free 

convection flow through a porous medium between 

two parallel plates; while Kearsley (1994) studied 

problem of steady state Couette flow with viscous 

heating. Makinde and Osalusi (2006) considered a 

MHD steady flow in a channel with slip at 

permeable boundaries. More recently, many 

researchers have focused attention on MHD 

applications where the operating temperatures are 

high. For example, at high temperatures attained in 

some engineering devices, gas can be ionized and so 

become electrically conducting. The ionized gas or 

plasma can be made to interact with the magnetic 

field and alter the heat and friction characteristics of 

the system. It is important to study the effect of the 

interaction of magnetic field on the temperature 

distribution and heat transfer when the fluid is not 

only electrically conducting but also when it is 

capable of emitting and absorbing thermal radiation. 

Heat transfer by thermal radiation is important when 

we are concerned with space technology 

applications and in power engineering. Thus, Grief 

et al. (1971) obtained an exact solution for the 
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problem of laminar convective flow in a vertical 

heated channel within the optically thin limit of 

Cogley et al. (1968). Makinde and Mhone (2005) 

investigated the effect of thermal radiation on MHD 

oscillatory flow in a channel filled with saturated 

porous medium and non-uniform wall temperatures. 

Kumar et al. (2010) considered the problem of 

unsteady MHD periodic flow of viscous fluid 

through a planar channel in porous medium using 

perturbation techniques. Narahari (2010) studied the 

effects of thermal radiation and free convection 

currents on the unsteady Couette flow between two 

vertical parallel plates with constant heat flux at one 

boundary. Israel Cookey and Nwaigwe (2010) 

considered unsteady MHD flow of a radiating fluid 

over a vertical moving heated porous plate with time 

-dependent suction. Recently Israel Cookey.C, et al. 

(2010) investigated the combined effects of thermal 

radiation and transverse magnetic field on steady 

flow of electrically conducting optically thin fluid 

through a horizontal channel filled with saturated 

porous medium and non-uniform wall temperatures. 

K.D.Singh & Reena Pathak (2012) discussed the 

effects of hall current and rotation on MHD free 

convection flow in a vertical rotating channel 

filled with porous medium. In this paper, we 

discussed the combined effects of radiative heat 

transfer and a transverse magnetic field on steady 

rotating flow of an electrically conducting optically 

thin fluid through a porous medium in a parallel 

plate channel and non-uniform temperatures at the 

walls. 

 

II. Formulation and Solution of the 

Problem 
We consider the buoyancy induced steady flow 

of an electrically conducting optically thin fluid 

bounded by two parallel plates filled with saturated 

porous medium under the influence of a transverse 

uniform magnetic field of strength B0. The lower 

plate which is on 0z  is maintained at temperature  

0
TT   and the upper plate at hz   is maintained 

at temperature
1

TT  . A Cartesian co-ordinate 

system with x-axis oriented horizontally along the 

centre of the channel is introduced. The z axis is 

taken perpendicular to the planes of the plates is the 

axis of rotation and the entire system rotates about 

this axis with uniform angular velocity   as shown 

in the figure 1.  

 
Fig.1 Physical configuration of the problem 

 

We are assuming a Boussinesq incompressible fluid model and taking into consideration the radiative heat 

flux, the governing equations for the unsteady magneto hydrodynamic flow of viscous incompressible fluid 

through a porous medium bounded between two parallel plates in presence of thermal radiation, 
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Where u  and v are the velocity components along the x  and y  directions, p the pressure, T the 

temperature, g the gravitational acceleration, q the radiative heat flux,  T
  the coefficient of thermal expansion, 

  the coefficient of kinematic viscosity,   the electric conductivity, µe   the magnetic permeability, oH is the 
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applied magnetic field   density of the fluid, 
p

c  the specific heat capacity at constant pressure, 
T

K  the 

thermal conductivity and k the permeability of the porous medium.  

Since the plates extends to infinity along x and y directions, all the physical quantities except the pressure 

depend on z alone, and hence the respective equations of continuity are trivially satisfied. 

The boundary conditions are 

0
,0,0 TTvu   on   0z                    (2.4) 

1
,0,0 TTvu   on   hz                      (2.5) 

Let   iyxξivuF  ,  

Now combining equations (2.1) and (2.2), we obtain 
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Corresponding boundary conditions are 

0
,0 TTF   on   0z                                  (2.7) 

1
,0 TTF   on   hz                                    (2.8) 

We assume that the temperatures
0

T , 
1

T  of the walls are high enough to induce radiative heat transfer. Following 

Cogley et al. (1968) and assuming that the fluid is optically thin with relatively low density, then 
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where   is the mean radiation absorption coefficient. 

 In order to simplify the problem, we introduce the following non-dimensional variables and 

parameters. 
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 Where U is the mean velocity.  

 Making use of non-dimensional variables, the governing equations (2.3) and (2.6) reduces to 
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Corresponding boundary conditions are 

0,0  F  on   0z                                 (2.12) 

1,0  F  on   1z                                 (2.13) 
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ξ

p
P




  is the applied pressure gradient. 

 The mathematical formulation of the problem is now complete and embodies the solution of equations 

(2.10) and (2.11) subject to conditions (2.12) and (2.13). The problem posed in equations (2.10) and (2.11) are 

coupled nonlinear partial differential equations. The closed form solutions are herein deduced. We begin by 

solving the energy equation (2.11) since it is uncoupled and then advance a solution for the flow velocity. The 

solutions to the temperature, )(z  and velocity, )(zF  expressions are given by 
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Where, iEDM 2222   

Skin friction: Using Equation (2.14), the skin-friction or the shear stress at the upper wall of the channel in non-

dimensional form, is given by    
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Nusselt Number: From the temperature profile (equation (2.15)), the rate of heat transfer across the channel in 

non-dimensional form is given by 
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III. Results and Discussion 
In the preceding section, we have formulated and 

solved the problem of steady hydro magnetic flow of 

a radiating viscous fluid through a rotating parallel 

plate channel filled with porous materials. The 

complete expressions for the velocity, u(z) and 

temperature, θ(z) profiles as well as the skin friction, 

τ and the heat transfer rate, Nu are given in equations 

(2.14) – (2.17). In order to understand the physical 

situation of the problem and hence the manifestations 

of the effects of the material parameters entering into 

the solution of problem, we have computed the 

numerical values of the velocity, temperature, skin 

friction and the rate of heat transfer. The 

computational results are presented in Figures (2 – 

13) and Tables (1 – 3). 

It is evident from Figures (2 & 3) that, the 

magnitude of the velocity component u 

increases and the velocity component v 

decreases with the increase of Hartmann number 

M. This is because of the reason that effects of 

a transverse magnetic field on an electrically 

conducting fluid gives rise to a resistive type 

force (called Lorentz force) similar to drag force 

and upon increasing the values of M 

increases the drag force which has tendency to 

slow down the motion of the fluid. The 

resultant velocity decreases with increasing the 

intensity of the magnetic field. The variation of the 

velocity profile on permeability of the porous 

medium D  is shown in Fig. ( 4  &  5 ) . It is 

observed that in the rotating channel the velocity 

u increases and v decreases with increasing D. It is 

expected physically also because the resistance 

posed by the porous medium to the decelerated 

flow due to rotation with increasing permeability 

D which leads to increase in the velocity. Lower 

the permeability of the porous medium lesser the 

fluid speed is observed in the entire channel. The 

resultant velocity increases with increasing the 

porosity parameter D. The variation of velocity 

profiles under the influence of the rotation 

parameter E  is observed from Figures (6 & 7).  

B o t h  t he velocity components u  & v  increase 

when E  is increased. The resultant velocity also 

increases with increasing the rotation parameter E. 

The variations of the velocity profiles with 

the Grashof number Gr are shown in Fig.(8 & 

9). For small rotations (E=1), the velocity 

increases with the increasing Grashof number. 

The maximum of the velocity profiles shifts 

towards right half of the channel due to the 

greater buoyancy force in this part of the channel 

due to the presence of lower plate. For large 

rotation (E=4), the Grashof number has 

parabolic in nature on the velocity profiles in the 

right half and the left half of the channel. In the 

upper half there lies upper plate at z  = 0  and 

heat is transferred from the upper plate to the 

fluid and consequently buoyancy force enhances 

the flow velocity further. In the lower half of the 

channel, the transfer of heat takes place from the 

fluid to the lower plate at z =0. Thus, t he  
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r e su l tan t  velocity increases with increasing in 

Gr. It is noticed that, the magnitude of the both 

velocity components u & v and the resultant 

velocity enhance with increase in P (Fig.10&11)). 

i.e., the increasing pressure gradient P leads to 

the increase of velocity. The variation of 

velocity profile with radiation parameter R  is 

shown in (Fig. 12 & 13). The velocity u decreases 

and v increases with increasing the radiation 

parameter R. The resultant velocity also decreases 

with increasing in R.   

From Fig. (14), we present the behaviour of the 

temperature profile, θ for various values of the 

radiation parameter R. It is observed that the 

temperature profile increases with minimum at the 

lower plate and maximum at the upper plate. 

However, a general decrease in the fluid temperature 

profile within the channel is observed with increase 

in the radiation parameter R. 

The magnitude of the skin-friction x
  increase 

with M, D, E, Gr and P, reduce with increase in R. 

Likewise the magnitude of 
y

  increase with increase 

in E, P and R, reduce with increase in M, D and Gr 

(Tables 1-2). From Table 3, it is observed that the 

effect of increasing radiation parameter R and is to 

increase the magnitude of the rate of heat transfer 

(Nusselt number). 

 

IV. Conclusions 
It can be concluded that the fluid velocity profile 

is parabolic with maximum magnitude along the 

channel centre line and minimum at the walls. It is 

interesting to note that, the velocity of the fluid 

decreases with increases in the intensity of the 

magnetic field M, radiation parameter R and 

enhanced with increasing in Rotation parameter E, 

Grashof parameter Gr, pressure gradient P and 

porosity parameter D.  The fluid temperature within 

the channel is observed with increase in the radiation 

parameter R. The magnitude of the skin-friction x
  

increase with M, D, E, Gr and P, reduce with 

increase in R. Likewise the magnitude of y
  increase 

with increase in E, P and R, reduce with increase in 

M, D and Gr. We observed that the magnitude of the 

rate of heat transfer (Nusselt number) is increases 

with increase in radiation parameter R. 
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Graphs and Tables: 

 
Fig. 2:  The velocity Profile for u against M with 1,1,1,1,2.0  RPGrED

 
 

 
Fig. 3: The velocity Profile for v against M with 1,1,1,1,2.0  RPGrED

 
 

 
Fig.4: The velocity Profile for u against D with 1,1,1,1,2  RPGrEM  
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Fig. 5: The velocity Profile for v against D with 1,1,1,1,2  RPGrEM

 
 

 
Fig. 6: The velocity Profile for u against E with 1,1,1,2.0,2  RPGrDM

 
 

 
Fig. 7: The velocity Profile for u against E with 1,1,1,2.0,2  RPGrDM  
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Fig. 8: The velocity Profile for u against Gr with 1,1,1,2.0,2  RPEDM

 
 

 
Fig. 9: The velocity Profile for v against Gr with 1,1,1,2.0,2  RPEDM

 
 

 
Fig. 10: The velocity Profile for u against P with 1,1,1,2.0,2  RGrEDM  
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Fig. 11: The velocity Profile for v against P with 1,1,1,2.0,2  RGrEDM

 
 

 
Fig. 12: The velocity Profile for u against R with 1,1,1,2.0,2  PGrEDM

 
 

 
Fig. 13: The velocity Profile for v against R with 1,1,1,2.0,2  PGrEDM  
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Fig. 14: The velocity Profile for   against R 

 

M I II III IV V VI VII VIII IX X XI 

2 1.05515 1.09767 1.17505 1.14292 1.27208 1.30583 1.55651 1.85962 2.66409 0.26167 -0.7113 

3 1.93532 1.96753 2.02656 1.97732 2.04304 2.14666 2.35800 3.65930 5.38328 1.14933 0.18378 

4 2.88078 2.90591 2.95219 2.90146 2.93492 3.05948 3.23817 5.58288 8.28497 2.10067 1.14095 

5 3.84871 3.86912 3.90681 3.85986 3.87819 4.00206 4.15540 7.54408 11.2394 3.07285 2.11740 

 

 I II III IV V VI VII VIII IX X XI 

D 0.2 0.5 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

E 1 1 1 2 3 1 1 1 1 1 1 

Gr 1 1 1 1 1 2 3 1 1 1 1 

P 1 1 1 1 1 1 1 2 3 1 1 

R 1 1 1 1 1 1 1 1 1 2 3 

Table. 1    The skin friction ( x
  ) on upper plate 

 

M I II III IV V VI VII VIII IX X XI 

2 0.41571 0.40937 0.39823 0.80946 1.16658 0.39451 0.37331 0.85262 1.28953 0.41985 0.42389 

3 0.31064 0.30767 0.30235 0.61413 0.90465 0.29825 0.28586 0.63368 0.95672 0.31295 0.31522 

4 0.24082 0.23937 0.23675 0.47932 0.71336 0.23356 0.22629 0.48892 0.73702 0.24209 0.24336 

5 0.19506 0.19428 0.19286 0.389278 0.58183 0.19061 0.18615 0.39458 0.59411 0.19579 0.19652 

 

 I II III IV V VI VII VIII IX X XI 

D 0.2 0.5 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

E 1 1 1 2 3 1 1 1 1 1 1 

Gr 1 1 1 1 1 2 3 1 1 1 1 

P 1 1 1 1 1 1 1 2 3 1 1 

R 1 1 1 1 1 1 1 1 1 2 3 

Table. 2    The skin friction ( y
  ) on upper plate 

 

 R=0.1 R=0.3 R=0.5 R=0.9 

Nu  1.00333 1.02982 1.08198 1.25646 

Table. 3    The Rate of Heat transfer (Nu) on upper plate 
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